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We examine the dynamical evolution of the one-dimensional self-organized forest-fire model �FFM�, when
the system is far from its statistically steady state. In particular, we investigate situations in which conditions
change on a time scale that is faster than, or of the order of the typical time needed for relaxation. An analytical
approach is introduced based on a hierarchy of first-order nonlinear differential equations. This hierarchy can
be closed at any level, yielding a sequence of successively more accurate descriptions of the dynamics. It is
found that our approximate description can yield a faithful description of the FFM dynamics, even when a low
order truncation is used. Employing both full simulations of the FFM and our approximate descriptions, we
examine the time scales and cluster-size-dependent dynamics of relaxation to the statistical equilibrium. As an
example of changing external conditions in a natural forest, the effects of a time-dependent lightning frequency
are considered.
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I. INTRODUCTION

Over the last two decades, systems exhibiting self-
organized behavior have attracted considerable attention. The
term self-organized criticality �SOC� refers to extended dis-
sipative systems that are driven into a critical, self-similar,
and statistically stationary state independent of initial condi-
tions, without the need to fine-tune the system parameters.
Their common features can be characterized by slow driving
energy input, with rare intense dissipation events, whose size
distribution obeys a power law. Illustrating the versatility and
applicability of SOC in nature, several examples have been
identified. Sandpile models, which provide simple models
for avalanches, have been investigated both numerically
�1,2� and analytically �3�. Additional examples are earth-
quake models �4�, diffusion-limited aggregation �5�, and in-
vasion percolation models �6�. Many properties of SOC sys-
tems compare favorably to experimental data. For instance,
good quantitative agreement was found between the interoc-
curence time statistics of solar flares and the Bak-Tang-
Wiesenfeld sandpile model �7�.

In this paper our focus is the self-organized forest-fire
model �FFM�, originally introduced as a possible realization
of SOC �8�. This model was later modified by introducing a
lighting parameter to provide proper scaling behavior �9�.
Computer simulations �9–11� and analytical considerations
�12� confirm that sufficient separation of time scales leads to
SOC in the FFM. Mean-field-theory approximations �13�, an
inverse-cascade model �14�, and a renormalization group
technique �15� were proposed as analytical approaches to
understand the equilibrium of the FFM.

Previous work on the FFM has focused on understanding
the statistically steady behavior. However, it is also of inter-
est to examine situations where changes in the external con-
ditions in these systems occur on a time scale that is faster
than, or of the order of the typical time needed for relaxation
to the statistically steady state. As examples, we mention the
following situations of interest.

�1� The forest system on a large island might be destroyed
or otherwise globally effected by the occurrence of some

major disaster such as a large volcanic eruption. In such a
case one might be interested in the time evolution of the
regrowing forest including the effect of forest fires. Thus one
might be interested in the FFM dynamics starting from an
initial condition far from the statistically steady state.

�2� The global conditions of a forest might be effected by
climate changes. If these changes occur on a time scale
shorter than, or of the same order as, the relaxation time to
the FFM statistically stationary state, then consideration of
dynamical processes away from the relaxed state is required.

�3� Normal seasonal weather changes can occur on a time
scale that is comparable to the frequency of large snow ava-
lanches.

�4� Self-organized criticality also arises in scale-free net-
works �16� from local interactions of large numbers of indi-
viduals. For instance, one might be interested in the dynam-
ics of a computer network in the case of sudden introduction
of a new technology or of sudden introduction of new con-
nections and nodes to the system.

�5� One might be interested in reducing the number of
rare and particularly destructive large forest fires by control-
ling the system dynamics, e.g., by preventing the formation
of large connected patches of forest through controlled
burns. In such a case, intermittent application of controls can
place the state away from the statistical equilibrium towards
which it subsequently begins to relax. This is a problem we
intend to address in the future.

In the present paper we investigate the dynamical behav-
ior of the self-organized forest-fire model in one dimension,
in the simplest case when burning of trees occurs instanta-
neously. The one-dimensional FFM is defined on a linear
grid of L sites, which for simplicity is taken to be periodic.
Each site can be in either of two states: empty �no tree on the
site� or occupied �there is a tree on the site�. The state of the
system is updated in discrete steps using the positive real
parameters p�1, f �1. In each step a tree is placed on the
empty sites with probability p. If a site is occupied, then we
“hit it with a lightning bolt” with probability f , which makes
it “burn down,” turning it into an empty site. If we denote the
time needed to burn down the largest clusters by Tmax �a
cluster is a group of contiguous trees�, then critical behavior
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in the FFM arises in the presence of double time-scale sepa-
ration, Tmax� p−1� f−1 �19�. The condition Tmax� p−1 is
most easily realized when fire spreads instantaneously to ev-
ery site that is part of the cluster containing a burning tree,
which is the situation that we consider in the rest of this
paper. A key parameter of the model is the ratio

� = f/p , �1�

which is assumed to be much less than one. Because the
FFM is self-organized, it can be expected that any substantial
departure from its equilibrium state will be followed by a
relaxation process. Our goal is to understand how the dy-
namical behavior of the self-organized forest-fire model can
be understood. As we shall see later, the time scale for relax-
ation to the statistically steady state is of the order of 1 / p
time steps. Thus the object of our paper is to study the FFM
dynamical process on the 1 / p time step scale. A hierarchy of
steady-state equations for correlation functions of the FFM
was proposed in �17�, and solved, as an approximation, with
a mean-field closure scheme. An inverse cascade model was
examined in �14�, which reproduces several characteristics of
the FFM. In the present paper we develop a hierarchy of
equations that describes the dynamics of the FFM and can be
closed to produce a set of self-consistent equations at any
arbitrary level, thus producing a sequence of successively
more accurate approximate descriptions of the dynamics. We
use these equations along with numerical simulations to ex-
amine the relaxation properties of the FFM and the effect of
nonsteady external parameters of the model.

In Sec. II we present a discussion of the dynamics and
examine an analytical approach for describing the nonequi-
librium behavior of the one-dimensional FFM. In Sec. III we
compare our analytical results with numerical simulations
and discuss their validity. Finally, in Sec. IV we summarize
our results and give conclusions.

II. DYNAMICS OF THE FOREST-FIRE MODEL IN ONE
DIMENSION

A. Framework

The one-dimensional model we consider is defined on a
grid consisting of L sites with periodic boundary conditions.
We now define what we mean by a “cluster.” In Fig. 1 each
box represents a site. There are L=32 sites shown, arranged
on a circle, where the circular topology corresponds to the
periodic boundary conditions of our model. An example of
state is shown, where a symbol T labels a site occupied by a
tree, and a symbol E labels an empty site. A cluster is a
sequence of sites that are bounded by exactly one empty site
on each side, and that has no empty sites in its interior. If
there are two consecutive empty sites, we say that there is a
cluster of size zero between them. Otherwise, the size of a
cluster is defined as the number of trees between its bound-
ing empty sites. For every x�L we define

Sx = number of clusters of size x . �2�

For example, in Fig. 1 cluster sizes are indicated by the num-
bers shown outside the circle of sites, and S5=1, S4=1, S2

=4, S1=1, S0=7. In general, since each empty site bounds
two clusters �one on each side�, and each cluster bounds two
empty sites, the number of empty sites, denoted Ne, equals
the number of clusters,

Ne = �
x=0

L

Sx, �3�

and the total number of sites can be expressed as

L = Ne + �
x=0

�

xSx. �4�

As shown in Ref. �12� the statistically stationary Sx follows a
simple power-law distribution Sx�x−2 for �x�1. As dis-
cussed in Sec. III A, statistical fluctuations of Sx in time are
always present in the FFM, but become smaller as L in-
creases.

We define an “n-cluster configuration” as a string of n
clusters that occur consecutively �say in the clockwise direc-
tion in Fig. 1�. We can describe such a configuration by
giving the sizes of consecutive clusters using the notation
�x1 ,x2 , . . . ,xn�. For instance, corresponding to the six clusters
bracketed by the arrowheads drawn inside the circle of sites
in Fig. 1, we have the six-cluster configuration �0,0,2,0,5,0�.
Given a n cluster �x1 , . . . ,xn� and a fixed value of i
=1, . . . ,n−1 we define Pn�x1 , . . . ,xn� for n�2 as the prob-
ability that a randomly chosen empty site is the one separat-
ing the clusters xi and xi+1 in the configuration �note that this
probability is the same for any choice of i=1, . . . ,n−1�. For
the special case n=1, we define P1�x� to be the probability
that a randomly chosen empty site has a cluster of size x on
its clockwise side, which is the same as the probability that it
has a cluster of size x on its counterclockwise side. P1�x� is
given by the number of clusters of size x divided by the
number of empty sites, i.e.,

P1�x� = Sx/Ne. �5�

P2�x ,y� is the probability that a randomly chosen empty site
separates the clusters of the two-cluster configuration �x ,y�.
For example, for the state shown in Fig. 1, we have P1�5�
=1 /14 and P2�0,2�=4 /14. The probability distribution for
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FIG. 1. A state of the FFM for L=32.
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an n−1 cluster configuration, Pn−1, can be calculated as the
marginal probability of Pn,

�
xn=0

L

Pn�x1, . . . ,xn� = Pn−1�x1, . . . ,xn−1� . �6�

In particular, for n=2 we have

�
y=0

L

P2�x,y� = P1�x� = Sx/Ne. �7�

Assuming statistical isotropy for L�1, we postulate that
Pn�x1 , . . . ,xn� is invariant to reflections of the grid, which
implies that Pn�x1 , . . . ,xn�= Pn�xn , . . . ,x1�.

B. Continuous-time approximation

Our goal is to understand how Pn evolves in time in situ-
ations far from the stationary state. We start with the follow-
ing observations. When placing a tree on an empty site be-
tween a cluster of size x and a cluster of size y �i.e., a two-
cluster configuration �x ,y��, a new cluster of size x+y+1 is
created by coalescing the two neighbors. In the special case
when an empty site is surrounded by empty sites on both
sides �i.e., x=0, y=0�, the addition of a tree will create a
cluster consisting of size one.

There are two possible ways for a cluster to change its
size. It can either burn down or a tree can be added at its
boundary. The probability that a cluster of size x burns down
in one step is 1− �1− f�x. We assume in what follows that
xf �1 so that

1 − �1 − f�x � xf . �8�

The addition of a tree at one of the two empty sites on the
cluster’s boundary occurs with probability

1 − �1 − p�2 � 2p , �9�

where we assume p�1. Since p and xf are small, the prob-
ability that both of these events happen simultaneously �i.e.,
a tree is added to a cluster which burns down� is negligible
compared to p and xf . Similarly, the probability that we add
two trees to the same cluster is of order p2 and also can be
neglected. According to Eqs. �8� and �9� the expected num-
ber of clusters of size x that either become larger or burn
down in one step is

Sx�x� + 2�p �for p � 1,� = f/p� . �10�

On the other hand, Sx can grow if two neighboring clusters of
sizes x1 ,x2 with x=x1+x2+1 coalesce, by the addition of a
tree to the empty site that separates them. The expected num-
ber of such empty sites is Ne�a+b+1=xP2�a ,b�, which com-
bined with Eq. �10� gives the dynamical equation,

Sx,m+1 − Sx,m = pmNe,m �
a+b+1=x

P2�a,b;m� − pm�2 + �mx�Sx,m,

�11�

where x�0 and m denotes the model time step with Sx,m,
Ne,m, and P2�a ,b ;m� the value of Sx, P2�a ,b�, and Ne at time

step m, and we now allow for time variation of p and � via
the replacements p→pm, �→�m. We approximate Eq. �11�
for pm�1 by a continuous-time description using a scaled
time variable,

t = �
k=1

m

pk, �12�

and introducing the following notations, Sx,m=Sx�t�, Ne,m
=Ne�t�, pm= p�t�, �m=��t�, Pn�x1 , . . . ,xn ;m�
= Pn�x1 , . . . ,xn ; t�, dSx�t� /dt= �Sx,m+1−Sx,m� / p. Thus Eq. �11�
�which applies for x�0� becomes

dSx�t�
dt

= Ne�t� �
a+b+1=x

P2�a,b;t� − �2 + ��t�x�Sx�t� . �13�

S0�t� grows because clusters burn down and become smaller
because empty sites become occupied,

dS0�t�
dt

= − 2S0�t� + ��t��
y=1

L

y�y + 1�Sy�t� . �14�

Summing Sx�t� for all x’s according to Eq. �3� gives

dNe�t�
dt

= − Ne�t� + ��t��
y

y2Sy�t� . �15�

As a check, we note that Eqs. �13� and �15� are consistent
with the requirement of site conservation, which using Eq.
�4� can be expressed as

d

dt�Ne�t� + �
y

ySy�t�	 = 0. �16�

Using P1�x ; t�=Sx�t� /Ne�t�, Eq. �13� can be rewritten in
terms of probabilities,

d�Ne�t�P1�x;t��
dt

= Ne�t� �
a+b+1=x

P2�a,b;t�

− �2 + ��t�x�Ne�t�P1�x;t� , �17�

which is the first step in a hierarchy of equations for Pn’s, to
be discussed in the following section. Equations �13� and
�15� describe the evolution of Sx�t� if P2�a ,b ; t� is known. As
we intend to give a general description of the model, we
cannot assume P2�a ,b ; t� to be in its equilibrium form. In
what follows we explain how a sequence of approximations
can be obtained, with each step providing a more accurate
description of the model.

C. Estimation of P2(a ,b ; t)

As a motivating example, we first consider the case where
we start t=0 with a completely empty grid, i.e., Ne�0�
=S0�0�=L and Sx�0�=0 for all x�0. We begin by assuming
that the time elapsed since the start of the experiment is short
enough that large clusters have not yet formed and that burn-
ing does not have a significant impact, i.e., x��1. If the
effect of fire is negligible, then the probabilities that any two
sites are occupied are uncorrelated, and thus the probabilities
of an empty site having a cluster of size x on its left and a
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cluster of size y on its right are independent. Hence

P2�x,y ;t� = P1�x;t�P1�y ;t� . �18�

If we assume Eq. �18� to hold, then Eq. �13� takes the form

dSx�t�
dt

=
1

Ne�t�
�

a+b+1=x

Sa�t�Sb�t� − �2 + ��t�x�Sx�t� . �19�

The time-dependent solution of Eq. �19� for L�1 and
��yy

2S�y , t��1 can be expressed explicitly as a function of
Ne�t� using a generating function technique as shown in the
Appendix. Equation �19� combined with Eq. �15� determines
the dynamics when P2�a ,b ; t� is approximately in the form
�18�. Eventually, clusters will grow so large that the assumed
conditions under which Eq. �19� is valid will no longer be
satisfied. To understand why this happens consider the situ-
ation when a large forest cluster burns down. This creates a
long string of adjacent empty sites that will change the uni-
form distribution created by the slow driving input of tree
growth, and Eq. �18� will no longer hold. At large time this
effect will be more pronounced as we decrease the value of
�, since lowering � leads to larger time-asymptotic correla-
tion length 	c��−
 �see Ref. �18��. Figure 2 shows S10 ver-
sus time with �=5�10−3 and L=106 from a full numerical
simulation of the FFM system �dotted curve� and from the
solution of the approximating system equations �19� and �15�
�solid curve�. From such plots we find that the accuracy of
Eq. �19� is relatively good for �=5�10−3, if t�2.5. We will
examine this in more detail in Sec. III.

We now turn to describe the dynamics of P2�x ,y ; t�. The
number of empty sites on the grid that separates the x and y
clusters of the two-cluster �x ,y� is Ne�t�P�x ,y ; t�. A two clus-
ter �x ,y� can be created in one step by adding a tree to
appropriate three-clusters: As shown in Fig. 3, the two clus-
ter �x ,y� will be created from �a ,b ,y� or �x ,a ,b� if a tree is
grown in the empty site separating the a and b clusters and if
a+b+1=x in the first case or if a+b+1=y in the second
case. According to its definition P3�u ,v ,w ; t� is the probabil-
ity that a randomly chosen empty site is the one separating
the u and v clusters �which is the same as the probability that

it separates the v and w clusters� in the three cluster �u ,v ,w�.
Accordingly, the expected number of configurations of type
�x ,y� created by tree growth in one step is

�
a+b+1=y

p�t�Ne�t�P3�x,a,b;t� + �
a+b+1=x

p�t�Ne�t�P3�a,b,y ;t� .

�20�

On the other hand, the number of two-cluster configurations
�x ,y� decreases if either a tree is added to any of the three
empty sites bounding x and/or y �these three empty sites are
the one to the left of the x cluster, the one between the x and
y clusters, and the one to the right of the y cluster�. As a
result, the expected number of two clusters of type �x ,y�
destroyed because of the addition of trees is
3p�t�Ne�t�P2�x ,y ; t�. Finally, fires can destroy either x or y in
a configuration �x ,y�, which decreases the number of �x ,y�
two clusters by p�t���t�Ne�t�P2�x ,y ; t��x+y�. Summarizing,
we have

d�Ne�t�P2�x,y ;t��
dt

= − �3 + ��t��x + y��Ne�t�P2�x,y ;t�

+ �
a+b+1=x

Ne�t�P3�a,b,y ;t�

+ �
a+b+1=y

Ne�t�P3�x,a,b;t� �21�

for �x�0,y�0�. Thus the solution of P2 depends on P3
�similar to the dependence of the evolution of P1 on P2 in
Eq. �17��. We have to consider the case when either x=0 or
y=0 separately, because clusters of type �0,x� will have
positive contribution from all clusters of type �a ,x�, a�0 if
a burns down. If x=0 and y�0 then we have to add
�aNe�t�P2�a ,x ; t�a��t� to the right side of Eq. �21�, which
yields

d�Ne�t�P2�0,y ;t��
dt

= − �3 + ��t�y�Ne�t�P2�0,y ;t�

+ �
a+b+1=y

Ne�t�P3�0,a,b;t�

+ �
a

Ne�t�P2�a,y ;t�a��t� . �22�
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FIG. 2. S10 /L versus time t for �=5�10−3 and L=106 with
empty grid initial conditions. The dash-dotted curve is the result
from a full numerical simulation, while the solid curve is from the
solutions of Eqs. �15� and �19�.
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The equation for Ne�t�P2�0,0 ; t� can be obtained if we com-
bine Eqs. �21� and �22� with the normalizing condition
�x,yP2�x ,y ; t�=1. It can be shown that Eqs. �21� and �22� are
consistent with our previous dynamical equation, Eq. �13�,
using Eq. �6�.

We can similarly continue this sequence of equations,
e.g., the dynamics of NePn for xi�0 �i=1,2 , . . . ,n� is given
by

d�Ne�t�Pn�x1, . . . ,xn��
dt

= − 
n + 1 + ��t���
i=1

n

xi	�Ne�t�Pn�x1, . . . ,xn;t�

+ Ne�t��
j=1

n

�
a+b=xj

Pn+1�x1, . . . ,xj−1,a,b,xj+1, . . . ,xn;t� ,

�23�

where in the sum over j we define the first and last terms of
the sum �j=1 and j=n� so that the argument of Pn+1 is
�a ,b ,x2 , . . . ,xn� for j=1 and �x1 , . . . ,xn−1 ,a ,b� for j=n. Thus
we obtain a sequence of descriptions in which the evolution
of Pn�x1 ,x2 , . . . ,xn ; t� depends on the higher-order probabil-
ity functions Pn+1�x1 ,x2 , . . . ,xn+1 ; t�. We can truncate the re-
sulting equation for a given Pn�x1 ,x2 , . . . ,xn ; t� by making
the assumption that for an �n+1�-cluster configuration of
type �x1 , . . . ,xn+1� the probability distribution of x1 does not
depend on xn+1, which can be stated in terms of conditional
probabilities,

P̃n+1�x1�x2, . . . ,xn+1;t� 
 P̃n�x1�x2, . . . ,xn;t� . �24�

This supposition is equivalent to assuming a limited correla-
tion length and is supported by the numerical observation
that, in the statistically steady state, the correlation function
decays exponentially with the distance �18�. Relationship
�24� along with Bayes’ theorem can be used to obtain

Pn+1�x1,. . ,xn+1;t� = P̃n+1�x1�x2,. . ,xn+1;t�Pn�x2, . . . ,xn+1;t�


 P̃n�x1�x2,. . ,xn;t�Pn�x2, . . . ,xn+1;t� ,

�25�

where we have used Eq. �24� to approximate P̃n+1 by P̃n.
Now again using Bayes’ theorem we have

P̃n�x1 �x2 , . . . ,xn ; t�Pn−1�x2 , . . . ,xn�= Pn�x1 , . . . ,xn ; t�, which

we use to eliminate P̃n in Eq. �25�, resulting in

Pn�x1,. . ,xn;t�Pn�x2,. . ,xn+1;t�
Pn−1�x2,. . ,xn;t�

, �26�

and Pn−1 can be expressed in terms of Pn by the use of Eq.
�6�, Pn−1�x2 , . . . ,xn ; t�=�x1

Pn�x1 , . . . ,xn ; t�. The importance
of Eq. �26� is that it expresses Pn+1 as a function of lower-
order probabilities Pn and Pn−1, which combined with the
dynamical equations, e.g., Eq. �23�, gives a closed set of
first-order ordinary differential equations. The highest-order
approximation we will examine in the following section is

given by Eqs. �21� and �22�. In this case we close our hier-
archy of equations with

P3�a,b,c;t� =
P2�a,b;t�P2�b,c;t�

P1�b;t�
. �27�

III. NUMERICAL EXPERIMENTS

A. Relaxation time

We introduce a measure characterizing the difference be-
tween two cluster size distributions, Sx and S

x
*,


�Sx,Sx
*� = ��Ne − N

e
*� + �

x=0

L

�Sx − S
x
*�x	��2L� . �28�

By Eq. �4� we have that 0�
�1. As an indication of how
the system relaxes to its time asymptotic steady state when �
is time independent, Fig. 4 shows plots of 
(Sx�t� ,Sx���)
versus t, where Sx�t� is calculated from the FFM with differ-
ent initial conditions, and Sx��� is calculated as an average
over a long time interval �t1 , t2�, where t1 is large. In particu-
lar, as initial conditions for calculating Sx�t� we took the
steady-state solution Sx��� of the FFM and eliminated clus-
ters that were larger then a chosen cutoff value xmax. In other
words, if an occupied site belongs to a cluster of size x
�xmax, we replace that occupied site by an empty site.

We see from Fig. 4 that for a fixed �, a broad range of
perturbations agree in the order of magnitude in their relax-
ation time scales as measured by 
. Because 
 involves an
average over all x, we refer to the relaxation of 
 as a “glo-
bal relaxation.” Later �in Sec. III C� we will examine the
relaxation of Sx as a function of x, and will find x-dependent
“local” time scales. Again referring to Fig. 4, we note that,
because of statistical fluctuations, none of the curves con-
verge to exactly zero. For the chosen � and system size of
L=106 used in Fig. 4, the statistical fluctuation between the
time-asymptotic Sx�t� and Sx��� is around 
�8�10−2. As a
comparison, L=105 results in 
=0.13 and L=107 leads to

=2.2�10−2. According to our observations, for a fixed grid
size L, the lower �, the higher the level of statistical fluctua-
tions. In particular, if � is too small, e.g., ��10−4 for L
=106, the effect of fluctuations of Sx�t� becomes so large that
it is comparable in magnitude to Sx�t� itself.
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B. Accuracy of our approximate descriptions of FFM
dynamics

To assess the accuracy of our analytical considerations,
we now compare the dynamics predicted by Eqs. �21�, �22�,
and �19� with time-independent � to full numerical simula-
tions of the FFM. For the solution of the full FFM we used a
grid size L=106, with p=5�10−4 and f = p�, with �=5
�10−2, 5�10−3, 2�10−3, 5�10−5. For the numerical solu-
tion of Eqs. �21� and �22� we proceed as follows. Equations
�21� and �22� determine the time evolution of the probability
function P2�x ,y ; t�, which at each time t depends on the vari-
ables x and y. Thus we have to solve the equations on a
two-dimensional grid of size L�L. However, it is known
from the statistically steady solution of the full FFM �9�, that
for a given � there exists a size limit above which forest
clusters are extremely rare. Therefore, instead of solving
Eqs. �21� and �22� for all clusters sizes, between 0 and L
=106, we restrict our attention to the most frequently occur-
ring ones and solve Eqs. �21� and �22� on a two-dimensional
grid �x ,y� of size 500�500.

Equation �13� is the first in our hierarchy of equations and
therefore from now on we will refer to it as the first-order
approximation. Similarly, the dynamics determined by Eqs.
�21� and �22� will be called the second-order approximation.
Figure 5 shows 
(Sx�t� ,S

x
*�t�) versus t for three different

values of � versus t, where Sx�t� is obtained from the second-
order approximation and S

x
*�t� is the result from numerical

solution of the FFM. For both, the initial condition was an
empty grid �i.e., Ne�0�=S0�0�=L and Sx�0�=0 for x�1�. It is
seen that, if 
�t� at large time �denoted 
�� is larger for one
value of � than for another, then this is generally also true for


 at other times. Thus we characterize the overall accuracy
by 
�. Figure 6 shows 
� versus � for the first- and second-
order approximations. We note that statistical fluctuations ac-
count for some of the difference between the Sx and S

x
*. It is

apparent that the second-order approximation performs sig-
nificantly better than the first-order approximation. Our re-
sults also indicate that decreasing � increases 
�. The log-
log plot shown in Fig. 6 demonstrates that 
� versus � is
consistent with a power-law dependence,


� � �−a �29�

for both the second-order approximation a�0.38, and the
first-order approximation a�0.31. Figure 7 compares the
time dependence of S10�t� from the full FFM with the time
dependence obtained from the first-order approximation
�solid curve in Fig. 7�a�� and from the second-order approxi-
mation �solid curve in Fig. 7�b��. The second-order method
predicts the time dependence of the evolution �Fig. 7�b�� and
the time-asymptotic form of Sx very well. Figure 8 shows the
time-asymptotic cluster size distribution Sx��� versus x ob-
tained from solution of our second-order equations �solid
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curve� and from a numerical calculation of the full FFM
�dots�. Again we see very good agreement.

C. Cluster-size-dependent dynamics

We now examine how the relaxation dynamics of Sx�t� for
time-independent � depends on the cluster size x. Figure 9
shows Sx�t� from the second-order approximation with empty
grid initial conditions for cluster sizes x=10,14,18,24.
When the FFM evolves, starting with a completely empty
grid as the initial condition, the first maximum that Sx�t�
reaches will also be its global maximum in time, as shown in
Fig. 7. From Fig. 9 it is apparent that larger clusters reach
this maximum later in time. This can be interpreted as being
due to the extra time taken by the coalescence process that
creates larger clusters form smaller ones. In the absence of
forest fires, i.e., �=0, Sx�t� would relax to Sx�t�=0 for x
�L, after this maximum is reached, as seen from the ana-
lytical solution presented in the Appendix. In the presence of
forest fires, however, Sx�t� oscillates around its time
asymptotic value until complete relaxation is achieved.

We examine the accuracy of the first-order approxima-
tion’s ability to predict the time of the first maximum of
Sx�t�. For every cluster size x we define tmax�x� to be the time
instant when Sx reaches its first maximum value. An approxi-
mate analytical expression tmax� ln�x /2+1� is obtained in
the Appendix. Thus the characteristic time scale for evolu-
tion of Sx as characterized by tmax is predicted to be longer
for larger x �i.e., larger cluster sizes�. Figure 10 compares the

calculated and the analytical tmax�x� data for �=5�10−3. We
see that the full FFM simulation results for tmax are in good
agreement with our first-order approximation.

D. Dynamics for time-dependent �(t)

As a final experiment we examine the ability of our
second-order approximation to describe the behavior of the
FFM when ��t� depends on time. For our experiment we
chose

��t� = �0�1 + A sin��t�� with A � 1, �30�

with �0=5�10−3. We explore the dependence of our results
on the driving amplitude A and frequency �. Consistent with
our expectation, we found that, after the transients related to
initial conditions relax, Sx�t� shows temporally periodic os-
cillatory behavior at the frequency �, Sx�t�=Sx�t+2� /��, as
shown in Fig. 11. Sx�t� has an approximately sinusoidal time
dependence for sufficiently small amplitudes and large fre-
quencies, e.g., if A=0.5, and �=1, as shown in Fig. 11. With
the increase of the driving amplitude and lowering of the
frequency, this sinusoidal wave form is distorted. For cases
where Sx�t� is approximately sinusoidal, we find that the am-
plitude of the oscillation of Sx, denoted a�x�, has an approxi-
mate power-law dependence on the cluster size x, i.e., a�x�
�x−�, with an exponent ��1.56 �see Fig. 12�, and the mid-
point of the oscillation is, to within our available accuracy,
the same as for the equilibrium solution of the FFM with ��t�
set to a steady value �0. The dependence of a�1� on the
driving frequency � is shown in Fig. 13. The maximum am-

0 2 4 6 8 10
0

1

2

3

4

x 10
−3

t

S
/L

S
10

(t)

S
14

(t)

S
18

(t)

S
26

(t)

FIG. 9. Sx versus time t for �=5�10−3, L=106, and x
=10,14,18,26 for the second-order approximation with empty grid
initial conditions.

0 20 40 60 80 100
0

1

2

3

4

5

x

t m
ax

ln(x/2+1)

FIG. 10. tmax�x� versus x for �=5�10−3, L=106. The dots are
the results from a full numerical simulation of the FFM, while the
solid curve is the analytical result from the first-order approxima-
tion, i.e., tmax�x�=ln�x /2+1� �Eq. �A4��.

0 5 10 15 20
0

1

2

3

4

5x 10
−3

t

S
10

/L

FIG. 11. S10 /L versus t for �0=5�10−3, L=106, �=1, and A
=0.5. The dotted curve is the result from the FFM, while the solid
curve is from the second-order approximation.

0 1 2 3 4 5
−12

−10

−8

−6

−4

ln(x)

ln
[a

(x
)]

FIG. 12. The amplitude of oscillation a�x� versus the cluster size
x for �0=5�10−3, L=106, �=1, and A=0.5.

DYNAMICS OF THE ONE-DIMENSIONAL SELF-… PHYSICAL REVIEW E 78, 021113 �2008�

021113-7



plitude of a�x� for each cluster size x is attained at the reso-
nant frequency �0�1.14. In the limit �→0 the system adia-
batically oscillates among steady-state solutions
corresponding to different constant � values. In other words,
if we denote the steady-state solution corresponding to a
fixed value of � by Sx�� ,�� then Sx�t��Sx(� ,��t�) for �
��0, which for A=0.5 and �0=5�10−3 leads to a nonvan-
ishing oscillation amplitude a�1�=2.5�10−3.

The existence of the resonant frequency is due to the pres-
ence of a characteristic time scale in the steady state, denoted
T, which is defined as the average time needed for an empty
site to become occupied and empty again. In order to give an
estimate for T, consider the following. The probability that
an empty site becomes occupied after time t equals 1−e−t,
leading to an average time for tree growth 1. If Ne denotes
the number of empty sites in the steady state, then the num-
ber of trees grown on the grid in one time step is Nep, which
equals the number of trees destroyed. Therefore, the fraction
of trees destroyed in one time step is pNe / �L−Ne�. Assuming
a constant rate of destruction for all trees, the probability that
a tree burns down after time t equals 1−exp�−tNe / �L−Ne��,
leading to an average lifetime �L−Ne� /Ne. As a result, we
have T=1+ �L−Ne� /Ne=1 / �Ne /L�, which corresponds to the
frequency �=2�Ne /L�1.07, using the measured result
Ne /L�0.17 for �=5�10−3. Resonance occurs when we
drive the system at a frequency corresponding the character-
istic time scale.

We define a phase shift 
��x� by which the oscillation of
Sx�t� lags that of ��t�. Figure 14 shows 
��x� versus the

cluster size x, with the solid curve corresponding to the
second-order approximation and the dots to the full FFM.
Burning of large clusters simultaneously creates many zero
size clusters, therefore zero size clusters oscillate close in
phase to larger ones seen illustrated in Fig. 14 �note that

�=0 and 
�=2� are equivalent�. Furthermore, in the re-
gion of large burns, small size clusters begin to form through
tree growth and coalesce in time to form larger clusters, lead-
ing to the decrease of 
� with increasing x �seen in Fig. 14�.
Figure 15 shows 
� as a function of cluster size x, obtained
from the second-order approximation, for the frequencies �
=1,2 ,4. An important point is that for ��1.5 the phase
difference 
��x� has a local minimum. Figure 16 shows S10
versus S6 starting from empty grid initial conditions as ob-
tained from the second-order approximation �Fig. 16�a�� and
from the full FFM �Fig. 16�b��. From both we see the effect
of the difference between 
��10� and 
��6� as manifested
by the elliptical shape of the trajectory S10�t� versus S6�t�,
and that the oscillation of S6�t� leads that of S10�t�, 
��10�
�
��6� consistent with Fig. 14.

IV. CONCLUSION

In this paper we examined dynamical behavior of the self-
organized forest-fire model in one dimension, on a time scale
that is faster than, or of the order of the time needed for
relaxation of the system to the statistically steady state. We
found that, similarly to the statistically steady-state behavior,
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the parameter � plays a crucial role in determining the dy-
namics. From a computational point of view, we found that
for a given grid size L, decreasing � increases the effect of
statistical fluctuations, which makes the study of the dynami-
cal behavior via solution of the full FFM less effective. This
becomes even more pronounced for larger cluster sizes. As
an alternative, we introduced an analytical approach, based
on a hierarchy of equations, which correspond to the L→�
limit of the FFM. The closure scheme for this hierarchy,
which is equivalent to assuming a limited correlation length,
gives a set of self-consistent, successively more accurate ap-
proximations to the dynamics. The agreement between our
hierarchy of equations and the numerical solutions of the full
FFM depends on the forest fire intensity �. Since a decrease
of � leads to larger correlation length �18�, in order to accu-
rately treat smaller lighting intensities �, one would have to
go to higher-order approximations in our hierarchy. We
found very good agreement between our second-order ap-
proximation and numerical simulations of the FFM for �
�2�10−3.

The relaxation of the FFM to its time-asymptotic value,
measured by the distance between distributions �in the sense
�28��, can be characterized by a single relaxation time scale
over a range of initial conditions �for a fixed ��. Relaxation
measured by Eq. �28� characterizes the process in a global
sense. On the other hand, locally for each individual cluster
size, a cluster-size-dependent time scale exists. We examined
this effect, starting from empty grid initial conditions, and
found that the time at the occurrence of the first maximum of
Sx�t� has an approximate logarithmic dependence on the
cluster size. This is due to the fact that larger clusters are
created through a cascading process from smaller ones, lead-
ing to a time delay.

To examine the effect of temporally changing external
conditions on the FFM, we investigated the effect of a time-
dependent forest-fire intensity ��t�. We found that for a sinu-
soidal ��t�, that �i� the numbers of clusters of size x, Sx�t�,
oscillates at the same frequency as ��t�; �ii� the amplitude of
the oscillation is a power-law function of the cluster size; and

�iii� there is a cluster-size-dependent phase lag.
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APPENDIX

For L�1, � constant and ��yy
2S�y , t��1 the solution of

Eq. �19� can be given by introducing F�x , t�=Sx�t�e−�2+�x�t,

dF�x,t�
dt

=
e−�2−��t

Ne�t�
�

a+b+1=x

F�a,t�F�b,t� . �A1�

Equation �A1� can be explicitly solved for the generating
function G�z , t�=�y=0

L zyF�y , t�,

G�z,t� =
G�z,0�

1 − zG�z,0��
0

t

e−�2−���/Ne���d�

. �A2�

In particular, for empty grid initial condition �i.e., G�z ,0�
=L�, Eq. �A2� yields

Sx�t� = L�1 − e−�1−��t

1 − �
	x

e−�2+�x�t,

Ne�t� = Le−t. �A3�

Accordingly, tmax, defined in Sec. III �dSx�tmax� /dt=0�, can
be approximated as

tmax�x� � ln� x

2
+ 1	 , �A4�

and the the magnitude of the first maximum is

Smax�x� = Sx�tmax� �
4xx

�x + 2�x+2 . �A5�
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